
Study of a Docker use-case for HEP
Jim Kowalkowski, Adam Lyon, and Marc Paterno

Revision 1

Contents

1 Introduction 1
2 Summary 3
3 Methods, Assumptions, and Procedures 4
4 Results and Discussion 10
5 Future directions 13
Bibliography 14

1 Introduction

Over the past few years, container technology has become increasingly promising as
a means to seamlessly make our software available across a wider range of platforms.
In December 2015, we decided to put together a set of docker images that serve as
a demonstration of this container technology for managing a run-time environment
for art-related software projects, and also serve as a set of test cases for evaluation of
performance.

Docker[1] containers provide a way to “wrap up a piece of software in a complete filesystem
that contains everything it needs to run”. In combination with Shifter[2], such containers
provide a way to run software developed and deployed on “typical” HEP platforms (such
as SLF 6, in common use at Fermilab and on OSG platforms) on HPC facilities at NERSC.

Docker containers provide a means of delivering software that can be run on a variety of
hosts without needing to be compiled specially for each OS to be supported. This could
substantially reduce the effort required to create and validate a new release, since one
build could be suitable for use on both grid machines (both FermiGrid and OSG) as well
as any machine capable of running the Docker container. In addition, docker containers
may provide for a quick and easy way for users to install and use a software release in a
standardized environment.

This report contains the results and status of this demonstration and evaluation.

1.1 Goals

The overall goals of this project were the following:

1

mailto:jbk@fnal.gov,lyon@fnal.gov,paterno@fnal.gov

2 Study of a Docker use-case for HEP (Rev. 1)

• To generate a container with a standard release of art, delivered to the container
through UPS, with the run-time environment completely established when the image
is booted.

• To deploy the container through Dockerhub[3] onto Cori[4], and use Shifter through
the Cori SLURM batch system to run art using standard simulation and reconstruc-
tion workflows.

• To generate a container with an art release re-installed directly into the standard
basic Linux directory structure /usr. This effectively removes UPS and makes the
entire release (including externals) part of the platform. This part was not tackled
in this initial exercise.

An initial set of goals and tasks was also established[6].

The specific container technology exploration goals were:

• to utilize the layer features of containers when building images,
• to utilize the Docker push and pull facilities for registering and accessing built

images, and
• to understand how to utilize docker images on Cori.

1.2 Rationale

Some of the advantages of moving towards container technology have already been
mentioned in the introduction. These include

• ease of deployment onto additional Linux variants for operations,
• reduced validation requirements for new Linux variants,
• ease of establishing a run-time and development environment for new users.

Our current software distribution system (UPS) exists in large part to support the
installation of multiple versions and variants of each required software product, allowing
the user of UPS to select which set of products are to be available in a given shell, while
providing a fairly strong guarantee that the set of software products being used are
binary-compatible. One significant drawback of the UPS system is the degree of expertise
required to package third-party software for delivery through UPS.

In our UPS releases, we deliver a compiler suite because we must assure we have a
sufficiently new compiler version on all supported platforms. Since the system compiler
on some systems is too old, we cannot use system compilers.

There may be noteworthy advantages to re-installation directly into the standard Linux
/usr directory. By using a base image built from a sufficiently current operating system,
we can assure that the system compiler is sufficiently new. For example, at the time of
this writing the Ubuntu 16.04 release, with a system compiler of GCC v5.3.1, is available.
If we are using the system compiler, we can also then use packages built and distributed
by the usual system installation tools.

This means no special handling is required to have consistency in all the installed software
and no requirement to have more than one compiler installed and made available through
UPS. This applied equally to the Python interpreter and environment. Many of the Python
tools and libraries demand a standard installation to work well together, and establishing

Study of a Docker use-case for HEP (Rev. 1) 3

a image with python as a platform tool (as opposed to a UPS external package) will again
help with consistency and easy of adding new libraries and tools.

1.3 Scope

The main focus is the art run-time environment, installed using a standard SLF 6 release
on an x86 64 platform, and tested on NERSC’s Cori. The target was art version 1 18
(with ROOT 6) and version 1 17 (ROOT 5), each with qualifier e9 (which means they were
built with GCC version 4.9.3, using the C++ 2014 language standard).

The testing here does not include operating through production grid facilities and services,
and does not include use of CVMFS.

We did explore how the several of the LHC experiments (ALICE, ATLAS, and CMS) are
using Shifter and CVMFS to test software release at NERSC. We met with CMS to find
out the status of testing container technology at NERSC.

1.4 Terminology

Container: “Docker containers wrap up a piece of software in a complete filesystem
that contains everything it needs to run: code, runtime, system tools, system
libraries anything you can install on a server. This guarantees that it will always
run the same, regardless of the environment it is running in.” — from https:
//www.docker.com/what-docker.

Image: “A Docker image is a read-only template. For example, an image could contain an
Ubuntu operating system with Apache and your web application installed. Images
are used to create Docker containers. Docker provides a simple way to build new im-
ages or update existing images, or you can download Docker images that other peo-
ple have already created. Docker images are the build component of Docker.” — from
https://docs.docker.com/engine/introduction/understanding-docker.

Shifter: “Shifter is a prototype implementation that NERSC is developing and experiment-
ing with as a scalable way of deploying containers in an HPC environment. ” — from
http://www.nersc.gov/research-and-development/user-defined-images.

Dockerhub: is a free repository for Docker images.
btrfs: “Btrfs is a new copy on write (CoW) filesystem for Linux aimed at implementing

advanced features while focusing on fault tolerance, repair and easy administration.”
— from https://btrfs.wiki.kernel.org.

2 Summary

We produced a series of Docker images, layered to reflect the dependencies of the software
products that each contains. The layers start at a basic SLF-compatible OS, building
up toward art, then larsoft, and ending at an experiment-specific release. The two final
images were published on DockerHub for testing: one containing a recent MicroBooNE
uboonecode release (v4 31 00) and one containing a ROOT 6 art release configured for
development with a study package (v1 18 03). Both of these images were deployed on
Cori at NERSC.

https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://docs.docker.com/engine/introduction/understanding-docker
http://www.nersc.gov/research-and-development/user-defined-images
https://btrfs.wiki.kernel.org

4 Study of a Docker use-case for HEP (Rev. 1)

We ran two test applications on Cori under Shifter using the SLURM batch system and
on our local development server (native and under Docker). The applications were: a
standard MicroBooNE simulation (uboonecode image) and a simple I/O and overhead
exercise (art study image). This paper shows consistent results amongst all three of these
environments for CPU and write performance.

The Cori tests demonstrate reading configuration from and writing simulation output to
the global file system using the scratch area under our user accounts. This exercises an
important feature of writing directly from the image running on a compute node to the
externally mounted global file system.

The procedure developed to complete this demonstration is a good start for moving
towards general use of Docker facilities for experiment software releases. All of the work
we have done is available in DockerHub, GitHub, and Fermilab’s Redmine.

3 Methods, Assumptions, and Procedures

3.1 Machine configuration

The following machines were involved in this project:

• woof.fnal.gov (SLF 6): the initial primary build site for images.
• cori.nersc.gov (Cray SuSE EL7 with v3 kernel).
• VM on Mac laptop (Centos 7).
• VM on woof (Centos 6.7).

3.1.1 Installing Docker for RHEL 7 (or equivalent) OS

For Centos7, we used the procedure at https://docs.docker.com/engine/installation/
centos/. The major parts of the procedure are

1. Make sure installed packages are up-to-date: yum update.
2. Add the Docker repository for yum to use:

sudo cat > /etc/yum.repos.d/docker.repo <<-EOF
[dockerrepo]
name=Docker Repository
baseurl=https://yum.dockerproject.org/repo/main/centos/7/
enabled=1
gpgcheck=1
gpgkey=https://yum.dockerproject.org/gpg
EOF

3. Install the Docker client and daemon: yum install docker-engine.
4. Start the Docker daemon: service docker start

5. Make sure the Docker daemon will be restarted on reboot: chkconfig docker on

6. Add the users who will use Docker to the docker group: usermod -a -G docker
<user>.

https://docs.docker.com/engine/installation/centos/
https://docs.docker.com/engine/installation/centos/

Study of a Docker use-case for HEP (Rev. 1) 5

3.1.2 Installing Docker for RHEL 6 (or equivalent) OS

For a RHEL 6 installation, more work is required.1 Furthermore, RHEL 6.5 or newer is
required.

The docker system was established on woof and the Centos6.7 VM using the instal-
lation procedure at https://docs.docker.com/v1.5/installation/rhel/#red-hat-
enterprise-linux-6.5-installation, with some additions.

The installation commands require root privileges; we assume the user is logged in as
root. Here are the basic steps:

1. Make sure EPEL is included in the list of accessible yum repositories.
2. Make sure the most recent list of yum packages is installed: yum update.
3. Remove the unrelated docker product, which collides with the Docker we are trying

to install: yum -y remove docker.
4. Install the Docker product: yum install docker-io. Note this is a different RPM

name than is used under RHEL 7.

The RHEL 6 default installation of filesystems and Docker device manager (devicemapper)
can not handle Docker images larger than 10 GB. This is insufficient to allow building
the MicroBooNE image.

To handle this, we had to switch to using btrfs[7] for the filesystem that docker uses on
woof.fnal.gov. To do this, we used the following prescription.

1. Format a new disk partition using btrfs,
2. Shut down docker and remove /var/lib/docker
3. Mount the new btrfs partition and link it to /var/lib/docker
4. Because the Docker daemon from the RPM above was not built with btrfs support,

we then had to install a new Docker image directly from the Docker site.
The docker image can be installed with:

> wget https://get.docker.com/builds/Linux/x86_64/docker-1.7.1 \
-O /usr/bin/docker

> chmod +x /usr/bin/docker

It is also necessary to edit /etc/sysconfig/docker. The line that sets other args
should specify that the btrfs filesystem should be used:

other_args="-s btrfs"

5. Start the Docker daemon: service docker start.
6. Make sure the Docker daemon starts on reboot: chkconfig docker on.

3.2 Building images

Each Docker image used in this study was created through instructions in a Dockerfile,
which is the standard mechanism for obtaining repeatable builds of Docker images.

The command to build a Docker image is:

1We note that a very old version of Docker is the newest version that is available for RHEL 6.x. As of
this writing, the current version of Docker is 1.10; the newest available for RHEL 6.x is Docker 1.7.1.

https://docs.docker.com/v1.5/installation/rhel/#red-hat-enterprise-linux-6. 5-installation
https://docs.docker.com/v1.5/installation/rhel/#red-hat-enterprise-linux-6. 5-installation

6 Study of a Docker use-case for HEP (Rev. 1)

paterno/centos67base

centos:6.7

paterno/centos67-build-base_v4_9_3-e9-prof

paterno/centos67-uboone_v04_31_00-e9-prof

paterno/centos67-nu_v1_18_1-s26-e9-prof

jbkowalkowski/centos67-art_1_18_03_e9-prof

jbkowalkowski/centos67-study_1_18_03_e9-prof

Figure 1: The layering of the Docker images used in the performance study. The names
are the Dockerhub identification of the images. The yellow box shows the official CentOS
6.7 image, provided by the CentOS project. The images denoted by the blue boxes were
produced as part of this study.

> docker build -t <tag> <path-to-Dockerfile>

Images can be created on any host system that supports Docker; the resulting images
can be loaded and run as containers from any other system that supports Docker.

Our strategy for building images, for this study, was to create a layer corresponding to
each UPS product bundle in our usual software delivery system. Figure 1 shows the
various layers that we produced. The CentOS 6.7 image is one provided by the CentOS
Project.

We started with the CentOS 6.7 image because it is compatible with SLF 6, which is the
main OS under which the SCD supports software. This allowed us to install already-
built UPS packages into the Docker image. The Dockerfile for building this image is in
listing 3.1. This creates an image that gives us all the products needed for building all of
our own software, and for all the third-party products we package through UPS.

FROM centos:6.7
MAINTAINER XXXXX
LABEL Vendor="FNAL"
LABEL License="BSD"
RUN yum install -y gcc
RUN yum install -y redhat-lsb-core
RUN yum install -y atk-devel apr-devel asciidoc cairo-devel

libconfuse-devel libcurl-devel fontconfig-devel freetype-devel
glib2-devel gtk2-devel krb5-devel libICE-devel libSM-devel libX11-
devel libXext-devel libXft-devel libXi-devel libXrender-devel

Study of a Docker use-case for HEP (Rev. 1) 7

libXt-devel libpng-devel libstdc++-devel mesa-libGL-devel mesa-
libGLU-devel ncurses-devel nss-devel openssl-devel openldap-devel
pango-devel qt-devel swig texinfo xmlto zlib-devel readline-devel
expat-devel libXpm-devel libXmu-devel bzip2-devel texinfo tk-devel
tcl-devel gcc-c++ libgcc.i686 glibc-devel.i686 libstdc++.i686

RUN yum -y install epel-release
RUN yum install -y libconfuse-devel
CMD ["/bin/bash", "-l"]

Listing 3.1: Dockerfile used to construct our base image.

Listing 3.2 shows the Dockerfile used to build the centos67-build base image. This image
contains the suite of compilers and related tools with we we build the rest of the software
we deliver. We use /etc/profile to establish the appropriate UPS products as active for
all login shells. Thus the user, upon starting a container based on this image (or on one
built upon it) does not need to set up the UPS environment, not the set of compilers to be
used for development work.

FROM paterno/centos67base
MAINTAINER Marc Paterno paterno@fnal.gov
ENV REFRESHED_AT 2015-12-28
LABEL Vendor="FNAL"
LABEL License="BSD"
RUN mkdir -p /products \

&& cd /products \
&& curl -O http://scisoft.fnal.gov/scisoft/bundles/tools/

pullProducts \
&& chmod u+x pullProducts \
&& ./pullProducts -r $PWD slf6 build_base-v4_9_3 e9 prof

COPY build_base_setup.sh /etc/build_base_setup.sh
RUN echo ’source /etc/build_base_setup.sh’ >> /etc/profile

Default command
CMD ["/bin/bash", "-l"]

Listing 3.2: Dockerfile used to construct the centos67-build base image.

Listing 3.3 shows the Dockerfile that was used to construct the art v1.18 image. This
image contains an installation of version 1.18 of the art framework. We happened to
build this image layered on our base image, rather than upon our build base image. This
is because of the order in which we were doing the development for this study. It would
probably be best to base the art 1.18 image on the build base image.

FROM paterno/centos67base
MAINTAINER XXXXX
LABEL Vendor="FNAL"
LABEL License="BSD"
RUN mkdir /products
RUN cd /products &&

8 Study of a Docker use-case for HEP (Rev. 1)

curl -O http://scisoft.fnal.gov/scisoft/bundles/tools/pullProducts &&
chmod u+x pullProducts &&
./pullProducts \$PWD slf6 art-v1_18_03 e9 prof
COPY build_base_setup.sh /etc/build_base_setup.sh
RUN echo ’source /etc/build_base_setup.sh’ >> /etc/profile
CMD ["/bin/bash"]

Listing 3.3: Dockerfile used to construct the art 1.18 image from the base.

Listing 3.4 shows the Dockerfile that was used to construct the study image. This image
contains all that is necessary to do development tasks using the art framework. The
directory /study comes pre-populated with the files necessary to begin development
work immediately.

FROM centos67-art_1_18_03_e9-prof
MAINTAINER XXXXX
LABEL Vendor="FNAL"
LABEL License="BSD"
ADD AnalysisWork/docker_study /study
RUN echo ’cd /study; source setup.sh’ >> /etc/profile
CMD ["/bin/bash", "-l"]

Listing 3.4: Dockerfile used to construct the study image from art 1.18.

Listing 3.5 shows the steps used to build the images, to tag them, and to upload them
to a public repository. We used the central docker repository at https://hub.docker.
com/, using (Dockerhub) accounts jbkowalkowski and paterno for pushing images from
woof.fnal.gov and the other VMs. In some more recent work, we have begun using
makefiles to automate these steps.

> git clone git@github.com:jbkowalkowski/Dockerfiles.git docker
> cd docker
> cd base_centos67
> docker build -t base_centos67 .
> docker tag -f <IMAGE ID> paterno/centos67base
> docker push paterno/centos67base
> cd ../art_1_18_03
> docker build -t centos67-art_1_18_03_e9-prof .
> docker tag -f <IMAGE ID> jbkowalkowski/centos67-art_1_18_03_e9-prof
> docker push jbkowalkowski/centos67-art_1_18_03_e9-prof
> cd ../study_1_18_03
> docker build -t centos67-study_1_18_03_e9-prof .
> docker tag -f <IMAGE ID> jbkowalkowski/centos67-study_1_18_03_e9-

prof
> docker push jbkowalkowski/centos67-study_1_18_03_e9-prof

Listing 3.5: Complete set of commands usted to build, tag, and push all the images. The
IMAGE ID was obtained using the docker images command.

https://hub.docker.com/
https://hub.docker.com/

Study of a Docker use-case for HEP (Rev. 1) 9

3.3 Using images

For testing on standard Linux machines, the docker run command can be used to
launch a container. Listing 3.6 provides some example commands. Note the use of --rm
and -v in the command. The flag -v hostpath:containerpath instructs Docker to
mount the host directory hostpath as containerpath in the running container. The
flag --rm instructs Docker to remove the named container upon exit. The combined
result is that only changes made to the host filesystem will remain after the container is
exited.

Run a container based on the centos67-study_1_18_03_e9-prof image,
and destroy the container upon exit.
> docker run --rm -it centos67-study_1_18_03_e9-prof
Mount a directory from the host’s scratch filesystem at /scratch in
the container.
> docker run --rm -it -v /mnt/disk1/scratch/jbk/:/scratch \

centos67-study_1_18_03_e9-prof

Listing 3.6: Examples shell commands to run a Docker container.

Use of Docker images on Cori is different. Cori uses a custom container loading system,
developed at NERSC, called Shifter. Shifter is capable of downloading Docker images from
Dockerhub. Docker images can be installed from the interactive nodes, but containers
can only be run within the compute nodes, launched through the SLURM batch system
tools. Shifter provides its own tool, shifterimg, to pull Docker images from Dockerhub.
Listing 3.7 shows the steps necessary to pull some Docker images.

> module load shifter
> shifterimg -v pull docker:paterno/centos-uboone_v04_31_00-e9-prof:

latest
> shifterimg -v pull docker:jbkowalkowski/centos67-study_1_18_03_e9-

prof:latest

Listing 3.7: The steps necessary to pull Docker images on Cori at NERSC.

Launching a job that uses a Docker container is done using SLURM. Listing 3.8 shows a
sample SLURM script that runs the MicroBooNE simulation program.

#!/bin/bash -l

#SBATCH --image=docker:paterno/centos-uboone_v04_31_00-e9-prof:latest
#SBATCH --partition=debug
#SBATCH --nodes=1
#SBATCH --time=00:09:30
--volume=\$SCRATCH/test_out:/scratch

shifter --volume=\$SCRATCH/test_out:/mnt /bin/bash -cl "cd /mnt; lar
-c prodsingle_uboone_mfp_01.fcl >out01.txt 2>&1 "

shifter --volume=\$SCRATCH/test_out:/mnt /bin/bash -cl "cd /mnt; lar
-c prodsingle_uboone_mfp_02.fcl >out02.txt 2>&1"

10 Study of a Docker use-case for HEP (Rev. 1)

shifter --volume=\$SCRATCH/test_out:/mnt /bin/bash -cl "cd /mnt; lar
-c prodsingle_uboone_mfp_03.fcl >out03.txt 2>&1 "

Listing 3.8: The SLURM batch script for using our Docker container.

4 Results and Discussion

4.1 Results

Two distinct tests were run on each of three different platforms, using the two final
images that we produced: one test for the MicroBooNE image and one test for the art
study image. Table 1 shows the list of platforms used for these two tests, along with a
few important attributes.

test location model speed micro-architecture

cori cori.nersc.gov Intel E52698v3 2.30GHz Haswell
native woof.fnal.gov Intel E52680v2 2.80GHz Ivy Bridge
docker woof.fnal.gov Intel E52680v2 2.80GHz Ivy Bridge

Table 1: Processors used in test

The MicroBooNE test used a standard simulation workflow configuration to provide a set
of events; the FHiCL file used to configure the program is shown in listing 4.1.

Listing 4.1: The FHiCL file used to run the MicroBooNE simulation tests.
#include "services_microboone.fcl"
#include "singles_microboone.fcl"
#include "largeantmodules_microboone.fcl"
#include "detsimmodules_microboone.fcl"
#include "triggersim_microboone.fcl"
#include "opticaldetectorsim_microboone.fcl"
#include "mccheatermodules.fcl"
process_name: SinglesGen

services: {
TFileService: { fileName: "single_hist_uboone_01.root" }
TimeTracker: { dbOutput: { filename: "timing_01.db" } }
RandomNumberGenerator: {}
user: @local::microboone_full_services

}
services.user.BackTracker: @local::microboone_backtracker

source:{
module_type: EmptyEvent
timestampPlugin: { plugin_type: "GeneratedEventTimestamp" }
maxEvents: 5 firstRun: 1 firstEvent: 1

}
physics:{
producers:{

generator: @local::microboone_singlep
largeant: @local::microboone_largeant
backtrack: @local::standard_backtrackerloader

Study of a Docker use-case for HEP (Rev. 1) 11

optdigitizer: @local::microboone_optical_adc_sim
optfem: @local::microboone_optical_fem_sim
triggersim: @local::ubtrigger_singlep
optreadout: @local::microboone_optical_dram_readout_sim
daq: @local::microboone_simwire

}
analyzers:{ largana: @local::microboone_largeantana }

simulate: [generator, largeant, backtrack, optdigitizer, optfem, triggersim,
optreadout, daq]

analyzeIt: [largana]
stream1: [out1]
trigger_paths: [simulate]
end_paths: [analyzeIt, stream1]

}
outputs:{
out1:{

module_type: RootOutput
fileName: "single_gen_uboone_01.root"
compressionLevel: 1

} }

physics.producers.generator.SigmaThetaXZ: [5.0]
physics.producers.generator.SigmaThetaYZ: [5.0]
physics.producers.generator.X0: [100.0]
physics.producers.generator.Z0: [50.0]
physics.producers.generator.P0: [1.5]

The art study test used a test module for producing 500 events, each containing a vector
of of 250 thousand integers. Each of the configurations used the RootOutput module
that writes all the events into an art-ROOT file.

Figure 2 on the following page shows the timing for each of the 11 art modules used in
the test. Note that the distribution of times for the Docker and the native runs on woof
are very similar. We see no important performance degradation caused by the user of
Docker. The comparison with execution under Docker on Cori shows the same relative
weights among the modules. We note that Cori has a significantly slower clock speed
than does woof. However, it appears that Cori’s Hazwell architecture, which is newer
than woofs, makes up for the difference in clock speed to yield very similar timing results.

Figure 3 on page 13 summarizes the timing data by combining the times for all the
non I/O modules, to make it easier to compare the compute performance and the I/O
performance among the different platforms. The spread of execution times on woof, both
for compute modules and for the I/O module, is slightly larger under Docker than on the
native run. However, the median times are very similar, and no large outliers are present.
We note that both the compute and I/O performance under Docker on Cori a just slightly
better than the performance on woof. Table 2 on the following page contains a detailed
comparison of the median event processing times.

4.2 Discussion

There are two things that were not addressed in this demonstration: (1) user permission
and account access, and (2) shared file systems access through the container.

12 Study of a Docker use-case for HEP (Rev. 1)

execution time (s)

TriggerResultInserter

UBTriggerSim

SingleGen

OpticalDRAMReadout

BackTrackerLoader

LArG4Ana

OpticalFEM

UBOpticalADCSim

LArG4

RootOutput

SimWireMicroBooNE

0 2 4 6 8

cori

0 2 4 6 8

docker

0 2 4 6 8

native

Figure 2: Module timing plot, showing the time in seconds it takes for each module
(denoted by the module class name) to process each event, on each platform.

test modules mediantime (sec/event) speed relative to native (larger is faster)

cori workers 11.325 1.047
docker workers 11.906 0.996
native workers 11.853 1.0

cori output 3.442 1.008
docker output 3.488 0.995
native output 3.470 1.0

Table 2: median Per-event timing

The default options for our containers launch the docker image as user root. Although
the running container is in a closed-off sandbox and damage that can occur appears to
be confined, we note that filesystems from the host OS can, and will need to be, mounted
within the running container. Access to those filesystems will be allowed according to the
accounts within the container. If the container is entered as root, then the applications
running into the container will be able to write anywhere in the mounted filesystem.
NERSC protects the main filesystems from this by booting the container in space that
matches the user ID that launched the container. This is an important thing to do. Docker
provides facilities to create users within an image, but we have not yet investigated these
options.

Study of a Docker use-case for HEP (Rev. 1) 13

execution time (s)

cori

docker

native

5 10 15 20

Non-I/O modules

5 10 15 20

RootOutput

Figure 3: Overall timing plot, showing the summarized per-event timing of the output
module (RootOutput) compared with the sum of the time taken by all other modules, for
each test platform.

In some cases, it is not reasonable to require that the image should contain all applica-
tions and data that are necessary for that image to be useful. For data and applications to
be reused throughout many runs (or launches) of the container, the shared systems are a
good solution. This came up in the context of both of our demonstration containers. For
the MicroBooNE container, the timing data and the FHiCL configuration files for starting
the jobs were placed into and used out of the Cori global scratch space. For the study
container, the situation was more complex. The development space within the container
was mounted on /study and the Cori scratch space was mounted on /scratch. The
source code for the test modules was made available in /study, along with everything
needed to build them. The first job launched completed a build of the test modules into
the /scratch area. Subsequent jobs directly used the code that was installed into the
mounted /scratch area. This was feasible because the global scratch area on Cori has a
long lifetime and is independent of any one job lifetime.

The entire issue of configuration file, application, and library sharing beyond a basic
self-contained software release will need to be addressed. All of these are examples of
things that need to be modified and survive outside the scope of a single container launch
(batch job in the case of Cori). There are also things that need to be moved in and out of
the machine or facility independent of the work carried out inside a container instance.

5 Future directions

This early work demonstrating container technology has exceeded our expectations. All
of the tools we’ve used from the Docker community have worked as promised, and also

14 Study of a Docker use-case for HEP (Rev. 1)

provide reasonable documentation. This section describes tasks that should be carried
out to futher this work.

Providing distributions through container technology looks to be an excellent way to
download and run from a complete and preconfigured software distribution. We already
need to provide two external groups with a way to confnigure and run our software to
produce simulated LAr detector data. Our current plan is to provide these groups with
containers to generate the data they need.

5.1 Scaling study with HEP Cloud

MicroBooNE Monte Carlo production is good candidate for Cori. There are a few tasks
that need to be completed before demonstrating a production run demonstration on the
order of 100,000 cores.

1. Demonstrate configuration and running on 128 Cori cores, using four fully loaded
nodes. This will check for CPU and file system performance degradation and also
allow us to refine the batch submission scripts. Expand the test to include the
hyperthreaded cores (up to 64) to measure the affects on performance.

2. Open a discussion with NERSC on storage and compute cycles for a larger-scale test.
This may need to include discussion of WAN bandwidth available from Fermilab to
NERSC for moving data off the global file system onto Fermilab resources.

3. Begin discussions with HEP Cloud to demonstrate launching a job through their
facilities for running on HPC resources. This will include discussing how to configure
individual application instances, how to move produced data back to Fermilab, and
any requires we may have for use of CVMFS.

5.2 Image build and deployment

A more automated procedure for building images will be needed for interaction with
outside groups. This includes adding steps to the release building procedure to create
and publish required images. Further investigate is needed to look into addition features
of Docker to aid in the deployment of development images. There are facilities for
automating the incorporation of newly built applications and libraries into images that
need to be explored. The image layers presented here suited the purposes we had for this
demonstration and may need to be reviewed as further tests are carried out on additional
platforms.

The last step in our original goal also needs to be completed. This goes a big step further
by moving many of the external products directly onto the platform. Such a change
permits a customized platform to be built up that meets our specific needs. This is
particularly important for core tools such as the C++ compiler, python, and boost.

Bibliography

[1] Docker is described at https://docs.docker.com/engine/introduction/
understanding-docker/.

https://docs.docker.com/engine/introduction/understanding-docker/
https://docs.docker.com/engine/introduction/understanding-docker/

Study of a Docker use-case for HEP (Rev. 1) 15

[2] Shifter is described at https://www.nersc.gov/research-and-development/
user-defined-images.

[3] Dockerhub can be found at https://hub.docker.com.

[4] Cori is NERSC’s newest supercomputer, and is described at http://www.nersc.gov/
users/computational-systems/cori/cori-phase-i.

[5] ISO/IEC 14882:2003 (Second Edition) Programming Languages - C++, John Wiley &
Sons, Ltd.

[6] Initial set of container tasks for testing at https://cdcvs.fnal.gov/redmine/
projects/art-hpc/wiki/Docker_use.

[7] The BTRFS filesystem is described at https://btrfs.wiki.kernel.org.

https://www.nersc.gov/research-and-development/user-defined-images
https://www.nersc.gov/research-and-development/user-defined-images
https://hub.docker.com
http://www.nersc.gov/users/computational-systems/cori/cori-phase-i
http://www.nersc.gov/users/computational-systems/cori/cori-phase-i
https://cdcvs.fnal.gov/redmine/projects/art-hpc/wiki/Docker_use
https://cdcvs.fnal.gov/redmine/projects/art-hpc/wiki/Docker_use

	1 Introduction
	2 Summary
	3 Methods, Assumptions, and Procedures
	4 Results and Discussion
	5 Future directions
	Bibliography

